Although there are differences depending on the bridge type and construction method, this phenomenon mainly occurs due to the time-dependent material properties, deformation of tendons or cables, and prestress loss. The change according to the time-dependent material properties is a phenomenon that occurs in all bridges using concrete regardless of the bridge type, and it is different from steel bridges.
Changes in the load, boundary conditions and material properties (creep, shrinkage, and changes in elastic modulus over time) of concrete during the construction stage must be applied in the analysis. Furthermore, the applied stress of tendons depends on the profile and prestressing forces of tendons. The tendon profile (defined as the distance from the neutral axis of the member to the tendon) should be considered when the neutral axis varies as a composite section at each construction stage. Prestressing forces should be considered for both the initial losses, such as friction or loss of anchorage, and losses that occur as the construction stage progresses, such as relaxation.
In the case of cable bridges such as cable-stayed bridges and suspension bridges, accurately evaluating the cable tension force is one of the most important parts in design and construction, and can be planned in advanced through the construction stage analysis. The initial tension force or length of the cable can be determined by backward analysis. The effect of member forces occurring in each construction stage and the effect of construction equipment such as derrick cranes can be reviewed by forward analysis, which analyzes in the order of construction stages.
Possible complications can be prevented in advance by controlling additional displacements or member forces that may occur during construction through the construction stage analysis, and the fabrication camber and camber in construction can be calculated in advance through the deflection calculation in order to increase constructability.