a) For a rigid base structures, the rigidity is very high, so no additional deformations occur in the structure. Therefore, the shear and moment caused by the seismic force is only resisted by the strength of the shear wall. As a result, damage (ex. cracks) form on the shear wall, but no damages other than the small displacement occur on the frame.
b) For a flexible base, since it cannot resist deformation of structure caused by seismic forces, rotation occurs in the shear wall. This rotation induces deformation to the frame, and as a result causes large deformations and cracks to the frame structure. However, the force demand of the shear wall decreases compared to a).
It can be seen that the analysis results for both cases are extremely different depending on the soil conditions. If the ground condition is not properly considered and interpreted as a rigid base as shown in a), the shear wall will be overdesigned and the frame will not be properly designed. The response of the structure as in case b) can be evaluated as the difference between the ground motion without the structure and the motion of the structure due to the stiffness of the foundation, and also as an additional displacement in the ground caused by the force induced by the motion of the structure. These mechanical phenomena are referred to as Kinematic Interaction and inertial interaction, respectively.
In SSI analysis, the linear/nonlinear behavior of the structure and the ground, as well as the nonlinear behavior at the contact surface between the structure and the ground (sliding, rocking) should be considered. Analytical methods can be largely divided into Direct and Substructure methods, depending on numerical modeling methods or seismic input methods.