Would you like to sign out?

Select Country

  • Afghanistan English
  • Albania English
  • Algeria English
  • American Samoa English
  • Andorra English
  • Angola English
  • Anguilla English
  • Antarctica English
  • Antigua and Barbuda English
  • Argentina Español
  • Armenia English
  • Aruba English
  • Australia English
  • Austria English
  • Azerbaijan English
  • Bahamas English
  • Bahrain English
  • Bangladesh English
  • Barbados English
  • Belarus English
  • Belgium English
  • Belize English
  • Benin English
  • Bermuda English
  • Bhutan English
  • Bolivia Español
  • Bosnia and Herzegovina English
  • Botswana English
  • Bouvet Island English
  • Brazil English
  • British Indian Ocean Territory English
  • British Virgin Islands English
  • Brunei English
  • Bulgaria English
  • Burkina Faso English
  • Burundi English
  • Cambodia English
  • Cameroon English
  • Canada English
  • Cape Verde English
  • Caribbean Netherlands English
  • Cayman Islands English
  • Central African Republic English
  • Chad English
  • Chile Español
  • Christmas Island English
  • Cocos (Keeling) Islands English
  • Colombia Español
  • Comoros English
  • Congo English
  • Cook Islands English
  • Costa Rica Español
  • Côte d’Ivoire English
  • Croatia English
  • Cuba Español
  • Curaçao English
  • Cyprus English
  • Czech Republic English
  • Democratic Republic of the Congo English
  • Denmark English
  • Djibouti English
  • Dominica English
  • Dominican Republic Español
  • Ecuador Español
  • Egypt English
  • El Salvador Español
  • Equatorial Guinea English
  • Eritrea English
  • Estonia English
  • Ethiopia English
  • Falkland Islands English
  • Faroe Islands English
  • Fiji English
  • Finland English
  • France English
  • French Guiana Español
  • French Polynesia English
  • French Southern Territories English
  • Gabon English
  • Gambia English
  • Georgia English
  • Germany English
  • Ghana English
  • Gibraltar English
  • Greece English
  • Greenland English
  • Grenada English
  • Guadeloupe Español
  • Guam English
  • Guatemala Español
  • Guernsey English
  • Guinea English
  • Guinea-Bissau English
  • Guyana English
  • Haiti Español
  • Heard Island and McDonald Islands English
  • Honduras Español
  • Hong Kong English
  • Hungary English
  • Iceland English
  • India English
  • Indonesia English
  • Iran English
  • Iraq English
  • Ireland English
  • Isle of Man English
  • Israel English
  • Italy English
  • Jamaica English
  • Japan 日本語
  • Jersey English
  • Jordan English
  • Kazakhstan English
  • Kenya English
  • Kiribati English
  • South Korea 한국어
  • Kuwait English
  • Kyrgyzstan English
  • Laos English
  • Latvia English
  • Lebanon English
  • Lesotho English
  • Liberia English
  • Libya English
  • Liechtenstein English
  • Lithuania English
  • Luxembourg English
  • Macau English
  • Madagascar English
  • Malawi English
  • Malaysia English
  • Maldives English
  • Mali English
  • Malta English
  • Marshall Islands English
  • Martinique English
  • Mauritania English
  • Mauritius English
  • Mayotte English
  • Mexico Español
  • Micronesia English
  • Moldova English
  • Monaco English
  • Mongolia English
  • Montenegro English
  • Montserrat English
  • Morocco English
  • Mozambique English
  • Myanmar English
  • Namibia English
  • Nauru English
  • Nepal English
  • Netherlands English
  • New Caledonia English
  • New Zealand English
  • Nicaragua Español
  • Niger English
  • Nigeria English
  • Niue English
  • Norfolk Island English
  • Northern Mariana Islands English
  • Norway English
  • Oman English
  • Pakistan English
  • Palau English
  • Palestine English
  • Panama Español
  • Papua New Guinea English
  • Paraguay Español
  • Peru Español
  • Philippines English
  • Pitcairn Islands English
  • Poland English
  • Portugal Español
  • Puerto Rico Español
  • Qatar English
  • Réunion English
  • Romania English
  • Russia English
  • Rwanda English
  • Saint Barthélemy Español
  • Saint Helena English
  • Saint Kitts and Nevis English
  • Saint Lucia English
  • Saint Martin Español
  • Saint Pierre and Miquelon English
  • Saint Vincent and the Grenadines English
  • Samoa English
  • San Marino English
  • São Tomé and Príncipe English
  • Saudi Arabia English
  • Senegal English
  • Serbia English
  • Seychelles English
  • Sierra Leone English
  • Singapore English
  • Sint Maarten English
  • Slovakia English
  • Slovenia English
  • Solomon Islands English
  • Somalia English
  • South Africa English
  • South Georgia English
  • South Sudan English
  • Spain English
  • Sri Lanka English
  • Sudan English
  • Suriname English
  • Svalbard and Jan Mayen English
  • Eswatini English
  • Sweden English
  • Switzerland English
  • Syria English
  • Taiwan English
  • Tajikistan English
  • Tanzania English
  • Thailand English
  • Togo English
  • Tokelau English
  • Tonga English
  • Trinidad and Tobago English
  • Tunisia English
  • Turkey English
  • Turkmenistan English
  • Turks and Caicos Islands English
  • Tuvalu English
  • U.S. Virgin Islands English
  • Uganda English
  • Ukraine English
  • United Arab Emirates English
  • United Kingdom English
  • United States English
  • U.S. Minor Outlying Islands English
  • Uruguay Español
  • Uzbekistan English
  • Vanuatu English
  • Vatican City English
  • Venezuela Español
  • Vietnam English
  • Wallis and Futuna English
  • Western Sahara English
  • Yemen English
  • Zambia English
  • Zimbabwe English
  • Åland Islands English
  • East Timor English
  • Netherlands Antilles English
  • Serbia and Montenegro English
  • North Macedonia English
  • Timor-Leste English
Bridge

Integral Bridge

1. What is Integral Bridge?

An integral bridge refers to a bridge in which the superstructure and the pier/abutment are integrated out of necessity. The integration between the superstructure and substructure implicates that there is no bearing that transmits force or displacement between the two structures.

Bridges in which the pier and the superstructure are integrated together are often used when the construction method is determined by the required span length. For example, they are structural systems used for long span bridges constructed with the balanced cantilever method (or free cantilever method, FCM). Since the pier and the superstructure are rigidly connected (rigid frame), it is difficult to accurately consider problems arising from external and internal factors in the design stage of integral bridges, but they are still steadily being used because of the advantages of FCM.

  • Fig. Integral Pier Bridge (Brisbane Gateway Bridge)

Expansion joints and bearings play an important role in bridge maintenance. Therefore, in order to eliminate problems that may occur during bridge maintenance as well as increasing structural efficiency, bridges in which abutments and superstructures are integrated are used. These types of bridges are referred to as integral bridges (integral abutment bridges).

  • Fig. Integral bridge and conventional bridge

Integral bridges have the advantage over conventional bridges due to their easy maintenance and reduced cost. This is possible because some bearings and expansion joints are removed. Furthermore, the elimination of expansion joints not only improves ride comfort, but also improves durability because rain, snow, and chloride cannot penetrate the substructure.

  • Fig. Expansion joint

Some features of integral bridges include:


  - Applicable to both concrete and steel bridges.

  - Displacement caused by thermal expansion and contraction is directly transmitted to the abutments and pile foundations,

    so displacement limitation is required.

  - Accurate evaluation is difficult because interaction between the abutment and the soil surrounding the structure is complex.

  - For concrete girders, the effects of creep and shrinkage should be considered.

  - Material and construction method of the backfill on the back of the abutment are important.

  - Precast girders can be used, but the reinforcement detail for moment connection as well as

    the beam-end rotation due to creep and shrinkage must be considered.



Additionally, geometric design standards such as the span length, skew, and height of abutment, as well as regional design conditions for temperature gradient, seismic, and moving loads must be considered.

  • Fig. Integral bridge

2. Types of Integral Bridge

Different types of integral bridges can be used depending on the location of the bridge, the structural type, and the characteristics of the soil. The four most representative integral bridges are as follows:

  • Fig. Types of integral bridge

A. Frame Abutment

  - In comparison to the other types of integral bridges, frame abutments have a higher abutment wall. The Frame abutment is integrated

    with the superstructure, forming a portal frame structure that can effectively support loads.

  - The horizontal earth pressure increases as the high of the abutment increases. Therefore, for frame abutments, the horizontal earth pressure of the backfill is large compared to other types of integral bridges.

B. Bank pad abutment

  - If the ground on the slope where the abutment is installed is high, bank pad abutments can be used because a high wall is not required.

  - If pile foundations are not used, bank pad abutments must be able to accommodate sliding due to thermal expansion and contraction as well as rotation due to deck beam bending at the interface between the structure and the ground.

C. Embedded wall abutment

- Like Frame abutments, embedded wall abutments are full height reinforced concrete integral bridge types.

  - Embedded walls are installed under the retained fill just like diaphragm walls.

  - Due to the high stiffness of the wall, it can withstand large earth pressure and can prevent ground subsidence.

D. Flexible support abutment

  - A method made to efficiently resist temperature changes transmitted to the pile foundations

    or resist displacements caused by the longitudinal direction forces.

  - A method of placing precast concrete holes(sleeves) around the piles to secure space for displacement.

  - In order to use a flexible support system for the bank pad abutment, reinforced earth retaining walls are placed in front or behind the abutments.


An example of the structural analysis model for Integral Bridge design is shown in the figure below.

  • Fig. Structural analysis model for integral bridge

3. Semi-Integral Bridge

Semi-integral abutment bridges, also know as end screen abutments, are designed to take full advantage and compensate the disadvantages of integral bridges, but differ in their structural system. For this particular type of bridge, the deck is integrated with the abutment wall, but not with the girder (ex. concrete beam, steel beam). Since a bearing system that can accommodate horizontal displacement is used to support the girder, the superstructure and substructure do not move as one.

Semi-integral bridges can be used for both frame abutments and bank pad abutments.

  • Fig. Types of semi-integral bridge

콘텐츠가 도움이 되셨나요? Did you find the content helpful?
To List
Table of Contents

Stay Updated on bridge Issues.