Seismic Fluid-Structure Interaction of Concrete Gravity Dams: A Numerical Approach in FEA NX

Harsha Tadavarthi | Geotechnical Team Leader & Technical Manager

CONTENTS

01 Challenges in Concrete Gravity Dams

- Tension Crack
- Fluid Structure Interaction
- Seismic Analysis

02 FEA NX Solutions

- Foundation & Dam Interface
- Fluid Structure Interaction

03 Demonstration

- Geometry Modeling
- Definitions for Seismic Analysis

04 Result Interpretation

- Reservoir Pressure
- Amplification

CONTENTS

01 Challenges in Concrete Gravity Dams

- Tension Crack
- Fluid Structure Interaction
- Seismic Analysis

02 FEA NX Solutions

- Foundation & Dam Interface
- Fluid Structure Interaction

03 Demonstration

- Geometry Modeling
- Definitions for Seismic Analysis

04 Result Interpretation

- Reservoir Pressure
- Amplification

Tension Crack

Tension Crack can be simulated using the Interface elements in FEA NX

Dam Rock Interface Types:

1. Linear

-+0.01217

-+0.01106

-+0.00996

-+0.00885

-+0.00774

+0.00664

+0.00553

+0.00443

-+0.00332

+0.00221

-+0.00111

+0.00000

2. Nonlinear - Plastic, Slip, Combined Cracking, Shearing & crushing

Fluid Structure Interaction

Methods of Hydrodynamic Load Application:

- 1. Added Mass Method
- 2. Sloshing Fluid

Added Mass:

- 1. Westergaard's added mass method
- 2.C.N. Zangar's added mass method

Overview of Added Mass Concept:

- The orientation of the pressure is normal to the face of the structure.
- Load distribution is parabolic in nature.
- Suitable for other Hydraulic Structures as well.

Fluid Structure Interaction

Overview of Sloshing Medium:

- Allows of wave propagation in water, sloshing effects, and the associated dynamic pressures on the dam.
- Water is not rigid, unlike the assumption in Westergaard's theory.
- Failure mode shape may differ from the Added Mass Concept.
- Do account for the movement of water relative to dam.
- Suitable when dam is flexible, and the reservoir is deep.

Seismic Analysis

Full Range of Seismic Analysis – All in One Solution

FEA NX provides all in one solution for Seismic Assessment ranging from Pseudo-Static Method, Eigenvalue, Response Spectrum Method, ID Ground Response Analysis, Deconvolution, 2D Equivalent Linear Method, and Time History Analysis (Direct & Modal Linear/Non-Linear).

Pseudo-Static Load on the Dam Body

Response Spectrum

ID Ground Response Analysis

Deconvolution

2D Equivalent Linear

Time History Analysis

Boundary Conditions for Seismic Analysis

<Schematic diagram of analysis domain and FEM modeling>

Boundary Conditions

Free field Main domain Seismic wave

Infinite Boundaries 1. Free Field 2. Absorbent

Boundary Conditions

Infinite Boundaries

Modulus of subgrade reaction (Auto-calculated)

$$K_{\rm H} = k_{\rm h0} \left(\frac{B_{\rm h}}{30}\right)^{-3/4}$$

$$K_{v} = k_{v0} \left(\frac{B_{v}}{30}\right)^{-3/4}$$

Ver. Subgrade reaction from PBT (30cm in diameter of steel plate)

Vertical area of element face (m') a : Modulus of elasticity coefficient (From table)

$$k_{v0} = \frac{1}{30} \alpha \cdot E_0$$

$[E_0 vs \alpha]$

E ₀ (kN/m²)	α	
		Under seismic
Elastic modulus from PBT	1	2
Measured elastic modulus from boring hole	4	8
Elastic modulus from 1D or 3D compresseion test	4	8
Elastic modulus from SPT using following relation (Eo= 28*N (tonf/m³))	1	2

Damping constant

Primary wave
$$C_p = \rho \cdot A \cdot \sqrt{\frac{\lambda + 2G}{\rho}} = W \cdot A \cdot \sqrt{\frac{\lambda + 2G}{W \cdot 9.81}} = c_p \cdot A$$

Secondary wave
$$C_s = \rho \cdot A \cdot \sqrt{\frac{G}{\rho}} = W \cdot A \cdot \sqrt{\frac{G}{W \cdot 9.81}} = c_s \cdot A$$

where,
$$\lambda = \frac{\nu \cdot E}{(1+\nu)(1-2\nu)} \qquad \qquad G = \frac{E}{2(1+\nu)}$$

χ : Volumetric modulus (tonf/m²)

G: Shear modulus (tonf/m²)

E : Elasticity (tonf/m²)

ν : Poisson's ratio

A : Element face area (m²)

Boundary Conditions

Base Boundary

Reference: Mejia, L.H. and Dawson, E.M., 2006, May. Earthquake deconvolution for FLAC. In 4th International FLAC symposium on numerical modeling in geomechanics (pp. 4-10). Citeseer.

One Stop Solution for All DAM & Hydropower related Challenges

CONTENTS

01 Challenges in Concrete Gravity Dams

- Tension Crack
- Fluid Structure Interaction
- Seismic Analysis

02 FEA NX Solutions

- Foundation & Dam Interface
- Fluid Structure Interaction

03 Demonstration

- Geometry Modeling
- Definitions for Seismic Analysis

04 Result Interpretation

- Reservoir Pressure
- Amplification

Geometry Model

Meshing

Boundary Conditions & FSI Definitions

General Workflow

Let's Model!!

Thanks for Attending!!

