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Tension Crack
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Tension Crack can be simulated using the
Interface elements in FEA NX

Dam Rock Interface Types:

1.Linear

2.Nonlinear — Plastic, Slip, Combined Cracking,

Shearing & crushing
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Fluid Structure

Interaction

Methods of Hydrodynamic Load Application:
1.Added Mass Method

2.C.N. Zangar's added mass method

T parabolic 2.Sloshing Fluid
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Overview of Added Mass Concept:

* The orientation of the pressure is normal to the
face of the structure.

» Load distribution is parabolic in nature.

» Suitable for other Hydraulic Structures as well.
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Fluid Structure
Interaction

Overview of Sloshing Medium:

 Allows of wave propagation in water, sloshing effects, and the associated dynamic pressures on the dam.
« Water is not rigid, unlike the assumption in Westergaard'’s theory.

 Failure mode shape may differ from the Added Mass Concept.

* Do account for the movement of water relative to dam.

 Suitable when dam is flexible, and the reservoir is deep.



Se|smlc Full Range of Seismic Analysis —All in One Solution

. FEA NX provides all in one solution for Seismic Assessment ranging from Pseudo-Static Method, Eigenvalue,
AnaIyS|S Response Spectrum Method, ID Ground Response Analysis, Deconvolution, 2D Equivalent Linear Method, and
Time History Analysis (Direct & Modal Linear/Non-Linear).
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Boundary
Conditions for
Seismic Analysis
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1. Free Field

BOU nda ry Inﬁnite Boundaries( 2.Absorbent
Conditions
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Boundary Infinite Boundaries
Conditions

Mass Spring Damper Main model
I |
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K, :Horzontal subgrade reaction (kN/nf) Where, T aena-2v) =3
K, :Vertical subgrade reaction (KN/ar)
k,, :Hor. Subgrade reaction from PBT (30cm In Gameter of steel piate)
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Boundary
Conditions

Deconvolution
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Reference: Mejia, L.H. and Dawson, E.M., 2006, May. Earthquake deconvolution for FLAC
geomechanics (pp. 4-10). Citeseer.
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One Stop Solution for All DAM & Hydropower
related Challenges

FEA
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Geometry Model

Reservoir 90m

Concrete
Gravity Dam

Foundation
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Meshing

Mesh Size=2m



Boundary
Conditions
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General Workflow

1. Geometry

Import, Create

4. Mesh

2. Material 3. Property

Element Attribute Element Attribute

5. Loads and Boundary

Mesh Control, Geometry Auto Mesh COHdItIOﬂS
Static Loads, Dynamic Loads, Constraints

6. Analysis

Problem solving

/. Result displaying

Contour Map, Probe, Report




Let's Modell!!



Thanks for Attending!!
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