Would you like to sign out?

Select Country

  • Afghanistan English
  • Albania English
  • Algeria English
  • American Samoa English
  • Andorra English
  • Angola English
  • Anguilla English
  • Antarctica English
  • Antigua and Barbuda English
  • Argentina Español
  • Armenia English
  • Aruba English
  • Australia English
  • Austria English
  • Azerbaijan English
  • Bahamas English
  • Bahrain English
  • Bangladesh English
  • Barbados English
  • Belarus English
  • Belgium English
  • Belize English
  • Benin English
  • Bermuda English
  • Bhutan English
  • Bolivia Español
  • Bosnia and Herzegovina English
  • Botswana English
  • Bouvet Island English
  • Brazil English
  • British Indian Ocean Territory English
  • British Virgin Islands English
  • Brunei English
  • Bulgaria English
  • Burkina Faso English
  • Burundi English
  • Cambodia English
  • Cameroon English
  • Canada English
  • Cape Verde English
  • Caribbean Netherlands English
  • Cayman Islands English
  • Central African Republic English
  • Chad English
  • Chile Español
  • Christmas Island English
  • Cocos (Keeling) Islands English
  • Colombia Español
  • Comoros English
  • Congo English
  • Cook Islands English
  • Costa Rica Español
  • Côte d’Ivoire English
  • Croatia English
  • Cuba Español
  • Curaçao English
  • Cyprus English
  • Czech Republic English
  • Democratic Republic of the Congo English
  • Denmark English
  • Djibouti English
  • Dominica English
  • Dominican Republic Español
  • Ecuador Español
  • Egypt English
  • El Salvador Español
  • Equatorial Guinea English
  • Eritrea English
  • Estonia English
  • Ethiopia English
  • Falkland Islands English
  • Faroe Islands English
  • Fiji English
  • Finland English
  • France English
  • French Guiana Español
  • French Polynesia English
  • French Southern Territories English
  • Gabon English
  • Gambia English
  • Georgia English
  • Germany English
  • Ghana English
  • Gibraltar English
  • Greece English
  • Greenland English
  • Grenada English
  • Guadeloupe Español
  • Guam English
  • Guatemala Español
  • Guernsey English
  • Guinea English
  • Guinea-Bissau English
  • Guyana English
  • Haiti Español
  • Heard Island and McDonald Islands English
  • Honduras Español
  • Hong Kong English
  • Hungary English
  • Iceland English
  • India English
  • Indonesia English
  • Iran English
  • Iraq English
  • Ireland English
  • Isle of Man English
  • Israel English
  • Italy English
  • Jamaica English
  • Japan 日本語
  • Jersey English
  • Jordan English
  • Kazakhstan English
  • Kenya English
  • Kiribati English
  • South Korea 한국어
  • Kuwait English
  • Kyrgyzstan English
  • Laos English
  • Latvia English
  • Lebanon English
  • Lesotho English
  • Liberia English
  • Libya English
  • Liechtenstein English
  • Lithuania English
  • Luxembourg English
  • Macau English
  • Madagascar English
  • Malawi English
  • Malaysia English
  • Maldives English
  • Mali English
  • Malta English
  • Marshall Islands English
  • Martinique English
  • Mauritania English
  • Mauritius English
  • Mayotte English
  • Mexico Español
  • Micronesia English
  • Moldova English
  • Monaco English
  • Mongolia English
  • Montenegro English
  • Montserrat English
  • Morocco English
  • Mozambique English
  • Myanmar English
  • Namibia English
  • Nauru English
  • Nepal English
  • Netherlands English
  • New Caledonia English
  • New Zealand English
  • Nicaragua Español
  • Niger English
  • Nigeria English
  • Niue English
  • Norfolk Island English
  • Northern Mariana Islands English
  • Norway English
  • Oman English
  • Pakistan English
  • Palau English
  • Palestine English
  • Panama Español
  • Papua New Guinea English
  • Paraguay Español
  • Peru Español
  • Philippines English
  • Pitcairn Islands English
  • Poland English
  • Portugal Español
  • Puerto Rico Español
  • Qatar English
  • Réunion English
  • Romania English
  • Russia English
  • Rwanda English
  • Saint Barthélemy Español
  • Saint Helena English
  • Saint Kitts and Nevis English
  • Saint Lucia English
  • Saint Martin Español
  • Saint Pierre and Miquelon English
  • Saint Vincent and the Grenadines English
  • Samoa English
  • San Marino English
  • São Tomé and Príncipe English
  • Saudi Arabia English
  • Senegal English
  • Serbia English
  • Seychelles English
  • Sierra Leone English
  • Singapore English
  • Sint Maarten English
  • Slovakia English
  • Slovenia English
  • Solomon Islands English
  • Somalia English
  • South Africa English
  • South Georgia English
  • South Sudan English
  • Spain English
  • Sri Lanka English
  • Sudan English
  • Suriname English
  • Svalbard and Jan Mayen English
  • Eswatini English
  • Sweden English
  • Switzerland English
  • Syria English
  • Taiwan English
  • Tajikistan English
  • Tanzania English
  • Thailand English
  • Togo English
  • Tokelau English
  • Tonga English
  • Trinidad and Tobago English
  • Tunisia English
  • Turkey English
  • Turkmenistan English
  • Turks and Caicos Islands English
  • Tuvalu English
  • U.S. Virgin Islands English
  • Uganda English
  • Ukraine English
  • United Arab Emirates English
  • United Kingdom English
  • United States English
  • U.S. Minor Outlying Islands English
  • Uruguay Español
  • Uzbekistan English
  • Vanuatu English
  • Vatican City English
  • Venezuela Español
  • Vietnam English
  • Wallis and Futuna English
  • Western Sahara English
  • Yemen English
  • Zambia English
  • Zimbabwe English
  • Åland Islands English
  • East Timor English
  • Netherlands Antilles English
  • Serbia and Montenegro English
  • North Macedonia English
  • Timor-Leste English

What is Nodal Body Force Used for?

November 25, 2021
BLOG STRUCTURE INSIGHT

OVERVIEW

A structural engineer will have to analyze and design many unique and innovative structures. Some of these structures cannot be defined with specific stories or slabs using floor diaphragms; therefore, the application of static seismic loads or wind loads is not possible.

The following discussion will explain how to analyze and design structures where floor diaphragms cannot be defined, or where a story consists of two-floor diaphragms. Examples of these cases are illustrated in Figures 1a and 1b.

 

Figure 1
Figure 1a. Steel Structure without Floor Diaphragms
 
 
Figure _1
Figure 1b. Structure Where a Story Consists of Two Floors Diaphragms
 

This material will discuss the following sections:

  1. How to use the Nodal Body Force function to apply a static seismic load for a slab that cannot be defined as a floor diaphragm

  2. How to use the Nodal Body Force function to apply a static seismic load for a steel structure with no slabs

  3. How to use the Nodal Body Force function to apply a static seismic load for a structure where a story consists of two-floor diaphragms

  4. Comparison of analysis results between two cases: The structure which uses floor diaphragms and the structure which does not use floor diaphragms

 

 

Structures Using the Nodal Body Functions


 

The Nodal Body Functions Used to Apply Static Seismic Load for a Slab

 

How to use the nodal body force function to apply static seismic load for a slab that cannot be defined as a floor diaphragm:

The Nodal Body Force function can be used to define masses as loads in any direction. Options which consider masses are the Nodal Mass, Load to Mass and Structure Mass options. When the Nodal Body Force function is used, an equivalent static seismic load can be defined using the mass of the structure.

The static seismic load is calculated using the base shear force as per IS 1893:2002. Part 1 of this code, section 7.5.3 Design Seismic Shear Force states:

Vb=Ah×W

In the above equation, the base shear force (Vb) is calculated using the mass (W=mg) and the design horizontal seismic coefficient (Ah). The design horizontal seismic coefficient (Ah) is calculated using the zone factor (Z), the importance factor (I), the response reduction factor (R), and the average response acceleration coefficient (Sa/g).

Ah=(Z×I×Sa)/(2×R×g)

The following is a description for defining a static seismic load using the Nodal Body Force function:

Obtain the design horizontal seismic coefficient (Ah), and enter it as the Nodal Body Force Factor for the corresponding direction. Ah is known when selecting Loads > Lateral Loads > Static Seismic Loads. For a defined load case, select Seismic Load Profile, and then select Make Seismic Load Calc. Sheet (Refer to Figure 2). The mass is automatically calculated using the defined mass (Nodal Mass, Load to Mass, Structure Mass), and the static seismic load is calculated for each node.

midas Gen only requires the input of the design horizontal seismic coefficient to define a static seismic load using the Nodal Body Force function.

 

Figure 2

Figure 2. Seismic Load Calc. Sheet

 

 

 

The Nodal Body Functions Used to Apply Static Seismic Load for a Steel Structure

How to use the nodal body force function to apply static seismic load for a steel structure with no slabs:

The 8-story steel structure has a steel-braced frame subjected to a lateral load. It is a structure consisting of brace members between each story, as shown in Figure 3. Because there are no slabs in the structure, the floors cannot be defined using floor diaphragms.

 
Figure 3
Figure 3. 8-Story Steel Structure
 
 

∙ Design Horizontal Seismic Coefficient (Ah) = 0.0268

Response Reduction Factor = 5.0

Zone Factor = 0.1

Importance Factor (I) = 1.5

Fundamental Period (T) = 0.075h (3/4) = 0.9336

Ah=(Z×I×Sa)/(2×R×g)

Mass (m) = 122.1 kN/g

Base Shear Force (Vb) = 1.12x106 N

 
Figure 4
 
Figure 4. Defining a Static Seismic Load Using the Nodal Body Force Function
 
 
Figure 5
 
Figure 5. Automatic Application of the Static Seismic Load Using the Mass at Each Node

 

While defining the static seismic load using the Nodal Body Force function, as shown in Figure 4, use Select by Window to select the nodes of the structure to add to the Node List. Also, enter the calculated design horizontal seismic coefficient displayed in the Seismic Load Calc. Sheet as the Nodal Body Force Factor.

The base shear force is calculated by multiplying the weight (Wi) with the design horizontal seismic coefficient (Ah). The base shear force is distributed to each node as the static seismic load on the structure. When the static seismic load is applied at the nodes using the Nodal Body Force function, the static seismic load is divided into the mass at each node. The resulting application of the static seismic load on the steel structure is displayed in Figure 5.

Table 1 compares the reaction forces (EX, EY) due to the static seismic load when slabs are defined with floor diaphragms, to reaction forces (Vnx, Vny) due to the static seismic load when the Nodal Body Force function is used. Both procedures generate the same results.

 
Table 1
Table 1. Comparison of Reaction Forces
 

This method is useful in applying a static seismic load for a steel structure with no definite floor diaphragms or a clear division of stories.

 

If you would like to keep reading this article, please download the VOL.12 White Paper below.

Subscribe S.O.S Newsletter

About Author
Yeong-il Seo | Principal Structural Engineer

Young-il has over 13+ years of experience in building design, especially high-rise buildings with column reduction analysis, plant structures, pushover analysis, health monitoring, and vibration control projects. Since 2016, he is planning and providing technical supports for midas building products such as midas Gen, nGen, and Design+.

E-BOOK Structural DesignGuide
using Nodal Body Force

This material explains how to analyze and design structures
where floor diaphragms cannot be defined,
or where a story consists of two floor diaphragms.