Would you like to sign out?

Select Country

  • Afghanistan English
  • Albania English
  • Algeria English
  • American Samoa English
  • Andorra English
  • Angola English
  • Anguilla English
  • Antarctica English
  • Antigua and Barbuda English
  • Argentina Español
  • Armenia English
  • Aruba English
  • Australia English
  • Austria English
  • Azerbaijan English
  • Bahamas English
  • Bahrain English
  • Bangladesh English
  • Barbados English
  • Belarus English
  • Belgium English
  • Belize English
  • Benin English
  • Bermuda English
  • Bhutan English
  • Bolivia Español
  • Bosnia and Herzegovina English
  • Botswana English
  • Bouvet Island English
  • Brazil English
  • British Indian Ocean Territory English
  • British Virgin Islands English
  • Brunei English
  • Bulgaria English
  • Burkina Faso English
  • Burundi English
  • Cambodia English
  • Cameroon English
  • Canada English
  • Cape Verde English
  • Caribbean Netherlands English
  • Cayman Islands English
  • Central African Republic English
  • Chad English
  • Chile Español
  • Christmas Island English
  • Cocos (Keeling) Islands English
  • Colombia Español
  • Comoros English
  • Congo English
  • Cook Islands English
  • Costa Rica Español
  • Côte d’Ivoire English
  • Croatia English
  • Cuba Español
  • Curaçao English
  • Cyprus English
  • Czech Republic English
  • Democratic Republic of the Congo English
  • Denmark English
  • Djibouti English
  • Dominica English
  • Dominican Republic Español
  • Ecuador Español
  • Egypt English
  • El Salvador Español
  • Equatorial Guinea English
  • Eritrea English
  • Estonia English
  • Ethiopia English
  • Falkland Islands English
  • Faroe Islands English
  • Fiji English
  • Finland English
  • France English
  • French Guiana Español
  • French Polynesia English
  • French Southern Territories English
  • Gabon English
  • Gambia English
  • Georgia English
  • Germany English
  • Ghana English
  • Gibraltar English
  • Greece English
  • Greenland English
  • Grenada English
  • Guadeloupe Español
  • Guam English
  • Guatemala Español
  • Guernsey English
  • Guinea English
  • Guinea-Bissau English
  • Guyana English
  • Haiti Español
  • Heard Island and McDonald Islands English
  • Honduras Español
  • Hong Kong English
  • Hungary English
  • Iceland English
  • India English
  • Indonesia English
  • Iran English
  • Iraq English
  • Ireland English
  • Isle of Man English
  • Israel English
  • Italy English
  • Jamaica English
  • Japan 日本語
  • Jersey English
  • Jordan English
  • Kazakhstan English
  • Kenya English
  • Kiribati English
  • South Korea 한국어
  • Kuwait English
  • Kyrgyzstan English
  • Laos English
  • Latvia English
  • Lebanon English
  • Lesotho English
  • Liberia English
  • Libya English
  • Liechtenstein English
  • Lithuania English
  • Luxembourg English
  • Macau English
  • Madagascar English
  • Malawi English
  • Malaysia English
  • Maldives English
  • Mali English
  • Malta English
  • Marshall Islands English
  • Martinique English
  • Mauritania English
  • Mauritius English
  • Mayotte English
  • Mexico Español
  • Micronesia English
  • Moldova English
  • Monaco English
  • Mongolia English
  • Montenegro English
  • Montserrat English
  • Morocco English
  • Mozambique English
  • Myanmar English
  • Namibia English
  • Nauru English
  • Nepal English
  • Netherlands English
  • New Caledonia English
  • New Zealand English
  • Nicaragua Español
  • Niger English
  • Nigeria English
  • Niue English
  • Norfolk Island English
  • Northern Mariana Islands English
  • Norway English
  • Oman English
  • Pakistan English
  • Palau English
  • Palestine English
  • Panama Español
  • Papua New Guinea English
  • Paraguay Español
  • Peru Español
  • Philippines English
  • Pitcairn Islands English
  • Poland English
  • Portugal Español
  • Puerto Rico Español
  • Qatar English
  • Réunion English
  • Romania English
  • Russia English
  • Rwanda English
  • Saint Barthélemy Español
  • Saint Helena English
  • Saint Kitts and Nevis English
  • Saint Lucia English
  • Saint Martin Español
  • Saint Pierre and Miquelon English
  • Saint Vincent and the Grenadines English
  • Samoa English
  • San Marino English
  • São Tomé and Príncipe English
  • Saudi Arabia English
  • Senegal English
  • Serbia English
  • Seychelles English
  • Sierra Leone English
  • Singapore English
  • Sint Maarten English
  • Slovakia English
  • Slovenia English
  • Solomon Islands English
  • Somalia English
  • South Africa English
  • South Georgia English
  • South Sudan English
  • Spain English
  • Sri Lanka English
  • Sudan English
  • Suriname English
  • Svalbard and Jan Mayen English
  • Eswatini English
  • Sweden English
  • Switzerland English
  • Syria English
  • Taiwan English
  • Tajikistan English
  • Tanzania English
  • Thailand English
  • Togo English
  • Tokelau English
  • Tonga English
  • Trinidad and Tobago English
  • Tunisia English
  • Turkey English
  • Turkmenistan English
  • Turks and Caicos Islands English
  • Tuvalu English
  • U.S. Virgin Islands English
  • Uganda English
  • Ukraine English
  • United Arab Emirates English
  • United Kingdom English
  • United States English
  • U.S. Minor Outlying Islands English
  • Uruguay Español
  • Uzbekistan English
  • Vanuatu English
  • Vatican City English
  • Venezuela Español
  • Vietnam English
  • Wallis and Futuna English
  • Western Sahara English
  • Yemen English
  • Zambia English
  • Zimbabwe English
  • Åland Islands English
  • East Timor English
  • Netherlands Antilles English
  • Serbia and Montenegro English
  • North Macedonia English
  • Timor-Leste English

Von-Mises Stresses: Physical Significance and Application in Steel Bridges

July 28, 2021
BLOG BRIDGE INSIGHT

The Whole New MIDAS Site Banner

 

🗂️ Download Now

Please fill out the Download Section below the Comment Section to download the complete guide to link elements.

Buttons_Download Now

 

1. STATIC FAILURE THEORY – DUCTILE MATERIALS

 

The main reason for observing stress is to determine if a part or structure fails. This article sees how parts fail under static or near-static loading and how to predict it. Part failure is affected by the part's geometry, its loads, and its material.

 

In general, shear strength limits ductile isotropic materials (Ductile Materials εmax >= 5%) in static tensile loading, and the tensile strength limits brittle materials.

 

There are several failure theories, but the two most reliable methods are:

  • Von-Mises Stress ( Maximum Distortion )
  • Maximum Shear Stress

Let's look at the Stress-Strain Curves in Fig.1

Stress-Strain Curve of Ductile Material

Figure 1. Stress-Strain curve of ductile materials
 
 

Frequently these curves are generated by placing a specimen in a machine and applying a tensile force until the material fails.

Fig.2 Tensile Test & Mohrs CircleFigure 2. Tensile test & Mohr's Circle

 

The degree scale for Mohr's circle is twice what it is in the material. This is because the maximum Shear occurs 90o away from the Maximum Normal Stress but 45o away from the material.

 


 

2. Recollecting Terminologies

 

1) Hydrostatic Loading

 

Materials, though stressed beyond their ultimate strength, do not fail under hydrostatic loading.

 

Fig.3 Hydrostatic LoadingFigure 3. Hydrostatic loading
 
 

With hydrostatic loading, there is compressive stress (normal) but no shear stress. This leads us to suspect that when the parts fail, shear plays a strange role. It is related to the distortion n of the objects. It allows the molecules to slide next to each other in the structural lattice.

 

2) Strain Energy

 

Fig. 4 gives the relationship between stress-strain and energy.

Fig.4 Strain EnergyFigure 4. Strain Energy
 
 

The energy (U) at any point is:

Equation 1.1

 

Using the relationship between stress and strain & substituting these into the equation for strain energy

 

equation 2.2

 

We saw earlier that hydrostatic loading alone did not cause failure. Hence the strain energy can be divided and developed above into two parts, Hydrostatic & Distortion Energy.

 

equation 3.3

 

The stresses causing hydrostatic energy are the same in all directions so we can divide the principal stresses into:

equation 4.4

Adding these together yields:

equation 5.1

 

For volumetric change with no distortion, the terms in parenthesis must equal zero so

 

equation 6.1

Now the Hydrostatic Energy (Uh) can be found. We know that hydrostatic stress is the same in all directions. Substituting in the total energy, one may obtain the Distortion Energy (Ud) as,

 

equation 7.1

Using this, we set,

equation 8.1

 

We call this the Von-Mises stress. It is based upon Distortion Energy, and it seems to be better at predicting failure than the other stresses.

 

3) Von-Mises Stress

 

Von-Mises effective stress is defined as the "uniaxial tensile stress that would create the same distortion energy as is created by the actual combined applied stresses".

Figure 5. Von Mises StressesFigure 5. Von-Mises Stresses
 

 

Example

We have the following stress in a material,         Fig.6 Example for computing Von Mises Stresses

Figure 6. Example for computing Von-Mises Stresses
 

 

4) Safety Factor

 

If we define the safety factor as:

N = Failure Stress / Analysed Stress

 

This N value should always be larger than 1. It is usually significantly larger than 1.

 

1.3 <= N <= 5 or higher

 

1.3 when everything is known and carefully analyzed & 5 when there are many things unknown. For Von-Mises Stresses, the safety factor is computed with

N = σy / σ= Yield stress / Von mises stress

 


 

3. Physical Significance of Von Mises Stress & Application in Steel Bridges

 

When we check the failure using the Von-Mises Stress, we are applying the Von-Mises yield criterion to determine to yield. Von Mises Stress Theory ( N = σy / σ ') is good for computing the Safety Factor against failure. Hence the material has to be checked if it fulfills the Von-Mises Criteria.

 

1) Application in Steel Bridges

 

Von Mises criterion is widely applied in the case of steel bridges and is the most preferred failure theory. Von Mises stresses are checked and ensure they are well within the elastic yield limit.

 

Consider a Bow-String Girder Bridge model in MIDAS CIVIL as in Fig. 7. The Yield Strength of the Girder of Material E250 is 250 N/mm2. Two cases are examined for Train Load and Double Track. The Stringer beam & the Cross Bracing at the mid-span as these elements are expected to experience maximum stress.

 

Fig. 7  midas Civil model of Bow-String Girder Bridge with applied Train LoadFigure 7. MIDAS CIVIL model of Bow-String girder bridge with applied train loads

 

The Von-Mises stresses can be obtained from MIDAS CIVIL, under Results > Stresses > Beam Stresses (Equivalent) > Von-Mises.

 

Fig. 8  Von-Mises Stress option in midas Civil modelFigure 8. Von-Mises Stress option in MIDAS CIVIL model

 

The Von-Mises stress for the Stringer Beam near Mid Span (Dark Yellow Contour ) is 159 N/mm2, less than the Yield Strength value. Hence the design is SAFE. However, one may revise the section to consider a higher Factor of Safety.

 

Fig.9 Von-Mises Stress for Stringer Beam near mid-spanFigure 9. Von-Mises Stress for Stringer Beam near mid-span

 

The Von-Mises stress for the Cross Bracing near the mid-span (Pale Green Contour ) is 152 N/mm2, lesser than the Yield Strength value. Hence the design is SAFE. However, it is hard not to notice that the Von Mises for the Arch element near the support is greater than the Yield Strength, and one needs to revise the section.

 
Fig. 10  Von-Mises Stress for Cross Bracing near mid-spanFigure 10. Von-Mises Stress for Cross Bracing near mid-span
 

In short, an engineer must keep the maximum value of Von-Mises stress induced in the material less than its yield strength.

 

Before Von-Mises's research looked at the tensile test of ductile materials, it was apparent that the failure was due to shear, not torsion. Both the Maximum Shear Stress Theory ( N = σys / τmax ) and Von Mises Stress Theory ( N = σy / σ ') are good for computing the safety factor against failure. However, the max shear stress theory is a little more conservative than the Von-Mises stress.

 

Note: The Maximum Normal Stress Theory ( N = σy / σ1 ) is not valid. Materials can fail even though N is greater than 1.

Susbcribe
MIDAS Newsletter

Thank you, See you soon!
Share
About the Author
Sindhu Bharathi |Senior Structural Engineer |MIDAS IT India

Sindhu has 7+ years of experience as a Civil Engineer (Structures) with extensive technical reviewing and consulting experience with bridge & building projects. Equally conversant with RCC, prestress, steel, and composite design. Predominantly interested in software workflow optimization.

Comments
DOWNLOAD Ebook Download

Please fill out the form below to download the Ebook

All