[Free Tools] Why Make Eurocode 1 Harder? Simplify Project Mapping with Better Tools

December 19, 2024
BLOG BRIDGE INSIGHT

Understanding Eurocode 1: Actions on Structures and the Role of Temperature Data

🗺️ A Personal Experience: Navigating Isothermal Maps

 

I still vividly remember the first time I had to determine the maximum and minimum air shade temperatures using the UK National Annex. My project site was situated between London and Brighton, and I turned to the isothermal maps for guidance. However, finding the exact location on the map turned out to be a surprisingly daunting task. The maps, embedded in a PDF file, lacked the precision and interactivity we've come to expect in the 21st century.

 

To my disbelief, this antiquated process had remained unchanged for decades. Pinpointing a project's location on a static 2D map was inefficient and error-prone. Like many engineers, I felt frustrated by the lack of modern tools to streamline this essential part of the design process. This frustration ultimately led me to develop a solution: the Maps of Isotherms tool, a more accurate, convenient, and intelligent way to handle temperature data.

 


Introduction

 

Now, we are focusing on our new Tool. For engineers working with Eurocode, every provision and note holds significance. Among the codes, 🔗Eurocode 1: Actions on Structures is essential for load assessment and is fundamental to structural design. This code enhances design efficiency by allowing engineers to apply its parts based on specific project needs selectively.

 

One essential aspect of Eurocode is the 🔗National Annex. Engineers must project the National Annex for localized guidelines depending on the project's location. While the annex provides sufficient information for design purposes, extracting precise details can be time-consuming. A case in point is the Map series. Through this blog, MIDAS will introduce three Map series. The first is "Maps of Isotherms,” the second is "🔗Seismic Hazard Map," and the last is the "Fundamental Basic Wind Velocity Map." We'll talk about the "Maps of Isotherms" in EN 1991-1-5, which addresses thermal actions in this blog. These maps are crucial for evaluating temperature data for structural design but often require meticulous interpretation.

 


Introducing the Maps of Isotherms Tool

 

The Maps of Isotherms tool is a modern solution that simplifies temperature data extraction. Designed to feel as intuitive as everyday map applications, it revolutionizes how engineers interact with isothermal maps.

 

🤔 How It Works

1. Input Your Project Location: Type in your project's address or click directly on the map.
2. View Temperature Data: Instantly retrieve your location's maximum and minimum shade air temperatures.
3. Visualize Isothermal Areas: The tool provides a color-coded visualization of isothermal zones, making it easy to interpret temperature gradient tools.

With this Tool, engineers can bypass the cumbersome task of manually analyzing static maps, saving time and effort.

 

🤔How to use it?

 

MIDAS TOOL

1. Search methods: a. Select the map directly, b: Enter the address

2. Select Standards: currently provides Belgium, Czech Republic, Finland, Greece, Ireland, and United Kingdom National Annex.

3. Convert the maximum and minimum temperature contour maps.

4. Check the maximum and minimum values.

 

Maps of Isotherms

 


Applying Temperature Data in Structural Design

 

When do engineers use temperature data? Temperature plays a crucial role in the design of fixed-supported structures, 🔗long-span bridges, high-rise buildings, and more. Here's a brief overview of how temperature data is used in the design process:

 

1. Collect Temperature Data

Gather climate data for the design area, including maximum and minimum temperatures. This information serves as the foundation for thermal load calculations.


2. Calculate Thermal Stress

Calculate the thermal stress acting on the structure using temperature changes and the material's coefficient of thermal expansion. This step ensures that the structure can handle temperature-induced deformations.


3. Verify Structural Stability

Analyze the deformation and stress caused by thermal loads to confirm the structure's stability. This evaluation ensures the design meets safety and performance standards.



Streamlining the Process with Advanced Tools

 

With technological advancements, engineers no longer need to rely on outdated methods for temperature data analysis. Modern tools simplify the data collection process and provide additional capabilities for subsequent steps in the design process.

 

🔜 Upcoming Features

A 🔗Uniform Temperature Load in Structure and 🔗Temperature Gradient Calculation Toolwill soon be available. This Tool will:

  • Covert uniform temperature load from changed temperature.
  • Compute self-equilibrium stress based on section dimensions.
  • Allow engineers to handle thermal loads with greater efficiency and accuracy.

 

By integrating these tools into their workflow, engineers can focus on innovation and design rather than time-consuming manual calculations.

 


Conclusion

 

Eurocode 1991-1-5 provides the essential framework for structural design, and temperature data is a vital part of this process. While traditional methods of working with isothermal maps have been cumbersome, tools like the Maps of Isotherms and the upcoming load calculator transform how engineers approach thermal analysis.

These tools empower engineers to access precise data, streamline calculations, and ensure their designs are both safe and efficient. We can take a significant step forward in modernizing structural engineering practices by embracing these advancements.

 

 

 

Are you curious about this tool?

Click the link below to access MIDAS Tools for free.

Maps of Isotherms

 

 

Susbcribe
MIDAS Newsletter

Thank you, See you soon!
Share
About the Author
Willow | Structural Engineer | MIDAS IT HQ

I'm Willow, a Civil engineer specializing in Structural engineering. I've worked as a railway project manager, and my current role is API project manager at MIDAS IT. Here, I'm dedicated to leveraging my structural engineering insights to pioneer API plug-ins, aiming to elevate customer experience through innovative solutions. I aspire to merge my technical insights with real-world experiences, offering a unique perspective on the intersection of engineering and life’s adventures.

Comments