Would you like to sign out?

Select Country

  • Afghanistan English
  • Albania English
  • Algeria English
  • American Samoa English
  • Andorra English
  • Angola English
  • Anguilla English
  • Antarctica English
  • Antigua and Barbuda English
  • Argentina Español
  • Armenia English
  • Aruba English
  • Australia English
  • Austria English
  • Azerbaijan English
  • Bahamas English
  • Bahrain English
  • Bangladesh English
  • Barbados English
  • Belarus English
  • Belgium English
  • Belize English
  • Benin English
  • Bermuda English
  • Bhutan English
  • Bolivia Español
  • Bosnia and Herzegovina English
  • Botswana English
  • Bouvet Island English
  • Brazil English
  • British Indian Ocean Territory English
  • British Virgin Islands English
  • Brunei English
  • Bulgaria English
  • Burkina Faso English
  • Burundi English
  • Cambodia English
  • Cameroon English
  • Canada English
  • Cape Verde English
  • Caribbean Netherlands English
  • Cayman Islands English
  • Central African Republic English
  • Chad English
  • Chile Español
  • Christmas Island English
  • Cocos (Keeling) Islands English
  • Colombia Español
  • Comoros English
  • Congo English
  • Cook Islands English
  • Costa Rica Español
  • Côte d’Ivoire English
  • Croatia English
  • Cuba Español
  • Curaçao English
  • Cyprus English
  • Czech Republic English
  • Democratic Republic of the Congo English
  • Denmark English
  • Djibouti English
  • Dominica English
  • Dominican Republic Español
  • Ecuador Español
  • Egypt English
  • El Salvador Español
  • Equatorial Guinea English
  • Eritrea English
  • Estonia English
  • Ethiopia English
  • Falkland Islands English
  • Faroe Islands English
  • Fiji English
  • Finland English
  • France English
  • French Guiana Español
  • French Polynesia English
  • French Southern Territories English
  • Gabon English
  • Gambia English
  • Georgia English
  • Germany English
  • Ghana English
  • Gibraltar English
  • Greece English
  • Greenland English
  • Grenada English
  • Guadeloupe Español
  • Guam English
  • Guatemala Español
  • Guernsey English
  • Guinea English
  • Guinea-Bissau English
  • Guyana English
  • Haiti Español
  • Heard Island and McDonald Islands English
  • Honduras Español
  • Hong Kong English
  • Hungary English
  • Iceland English
  • India English
  • Indonesia English
  • Iran English
  • Iraq English
  • Ireland English
  • Isle of Man English
  • Israel English
  • Italy English
  • Jamaica English
  • Japan 日本語
  • Jersey English
  • Jordan English
  • Kazakhstan English
  • Kenya English
  • Kiribati English
  • South Korea 한국어
  • Kuwait English
  • Kyrgyzstan English
  • Laos English
  • Latvia English
  • Lebanon English
  • Lesotho English
  • Liberia English
  • Libya English
  • Liechtenstein English
  • Lithuania English
  • Luxembourg English
  • Macau English
  • Madagascar English
  • Malawi English
  • Malaysia English
  • Maldives English
  • Mali English
  • Malta English
  • Marshall Islands English
  • Martinique English
  • Mauritania English
  • Mauritius English
  • Mayotte English
  • Mexico Español
  • Micronesia English
  • Moldova English
  • Monaco English
  • Mongolia English
  • Montenegro English
  • Montserrat English
  • Morocco English
  • Mozambique English
  • Myanmar English
  • Namibia English
  • Nauru English
  • Nepal English
  • Netherlands English
  • New Caledonia English
  • New Zealand English
  • Nicaragua Español
  • Niger English
  • Nigeria English
  • Niue English
  • Norfolk Island English
  • Northern Mariana Islands English
  • Norway English
  • Oman English
  • Pakistan English
  • Palau English
  • Palestine English
  • Panama Español
  • Papua New Guinea English
  • Paraguay Español
  • Peru Español
  • Philippines English
  • Pitcairn Islands English
  • Poland English
  • Portugal Español
  • Puerto Rico Español
  • Qatar English
  • Réunion English
  • Romania English
  • Russia English
  • Rwanda English
  • Saint Barthélemy Español
  • Saint Helena English
  • Saint Kitts and Nevis English
  • Saint Lucia English
  • Saint Martin Español
  • Saint Pierre and Miquelon English
  • Saint Vincent and the Grenadines English
  • Samoa English
  • San Marino English
  • São Tomé and Príncipe English
  • Saudi Arabia English
  • Senegal English
  • Serbia English
  • Seychelles English
  • Sierra Leone English
  • Singapore English
  • Sint Maarten English
  • Slovakia English
  • Slovenia English
  • Solomon Islands English
  • Somalia English
  • South Africa English
  • South Georgia English
  • South Sudan English
  • Spain English
  • Sri Lanka English
  • Sudan English
  • Suriname English
  • Svalbard and Jan Mayen English
  • Eswatini English
  • Sweden English
  • Switzerland English
  • Syria English
  • Taiwan English
  • Tajikistan English
  • Tanzania English
  • Thailand English
  • Togo English
  • Tokelau English
  • Tonga English
  • Trinidad and Tobago English
  • Tunisia English
  • Turkey English
  • Turkmenistan English
  • Turks and Caicos Islands English
  • Tuvalu English
  • U.S. Virgin Islands English
  • Uganda English
  • Ukraine English
  • United Arab Emirates English
  • United Kingdom English
  • United States English
  • U.S. Minor Outlying Islands English
  • Uruguay Español
  • Uzbekistan English
  • Vanuatu English
  • Vatican City English
  • Venezuela Español
  • Vietnam English
  • Wallis and Futuna English
  • Western Sahara English
  • Yemen English
  • Zambia English
  • Zimbabwe English
  • Åland Islands English
  • East Timor English
  • Netherlands Antilles English
  • Serbia and Montenegro English
  • North Macedonia English
  • Timor-Leste English

Time History Analysis of Steel U-Girder Bridge

June 15, 2020
BLOG PROJECT TUTORIAL

Please fill out the Download Section (Click here) below the Comment Section to download the Full Webinar PDF File 

 

The fatigue analysis is one of the assessment methods of bridges. Time History Analysis can be used to calculate the fatigue stresses. In this course, we tried to broaden your understanding of functions that are for time history analysis in midas Civil. In addition, we walked through in detail the process of time history analysis. It will be helpful to most of the bridge engineers who handle the time history analysis.


This 1-hour course covers the full process, from setting up options for the time history analysis to checking results. The actual steel U-bridge model from a real project was used in the training. 

 


 

This Project Tutorial highlights:

 

1. What to do to consider dynamic behavior of the bridge

In the dynamic analysis, not only the magnitude of loads but also the speed of loading or the frequency of loading affects the results. Therefore, we determine the mode of structure and check the dynamic response of the structure. 

 


2. How to define the time history analysis data

We will follow three steps to define the time history analysis data.

1) Time Forcing Functions

2) Time History Load Cases

3) Dynamic Nodal Loads

 

3. How to check results from Time History Analysis

midas Civil provides a lot of useful functions to verify the results from the time history analysis. We will follow several steps to get the stress and deformations along time.

 


 

1. What to do to consider dynamic behavior of the bridge

 

The eigenvalue analysis is necessary for all of dynamic analysis. Through the eigenvalue analysis, we can obtain the eigenvalue and eigenvector of structures. We can predict the dynamic behavior of the bridge using the eigenvalue and eigenvector. For instance, in the perspective of the whole bridge, the eigenvalue could be displacement and the eigenvector could be frequency. If the eigenvalue analysis is conducted for the column, the eigenvalue could be the buckling load and the eigenvector could be the buckling shape.

In order to perform the eigenvalue analysis, we need the mass of structures. midas Civil provides functions to convert structure bodies or dead loads to masses for the eigenvalue analysis.

 

Loads to Masses function

 

This function converts static load cases to masses. The process is simple.

1. Select the direction of mass

2. Select load types

3. Set the gravity acceleration

4. Select load cases

5. Input a scale factor

 

Loads to Masses Function
Fig. Loads to Masses Function

 

 

Convert Self-weight into Masses option in Structure Type function

 

This option converts structures to masses. If this option is used, elements that have material properties will be converted to masses automatically. If the self-weight is considered as beam element loads or pressure loads and etc, this option should be checked off to avoid to take masses of self-weight double. 

 

Convert Self-weight into Masses
Fig. Convert Self-weight into Masses

 

 

Lastly, we need to use Eigenvalue Analysis Control function(Analysis tab > Eigenvalue function). Here you can input the number of frequencies and select the type of analysis.

 

Reaction Results (Results Table > Reaction)  
Fig. Reaction Results (Results Table > Reaction)
 

 

The type of analysis has the feature as shown below.

 Eigenvalue Analysis Control 1

Eigenvalue Analysis Control 2

Eigenvalue Analysis Control - Ritz vector

 

To check that converted masses are properly used for the eigenvalue analysis, compare two values.

 

1. Total reaction results for self-weight and additional dead loads / the gravity acceleration

2. Accumulated modal masses of the higher mode / the ratio of modal participation masses

 

For instance, let's take a look at the figures below. These show reaction results and modal participation masses.

 

- A, Total reactions: 13,182 kN

- B, The gravity acceleration: 9.81 m/s2

- A', The ratio of participation: 89.11 %

- B', Accumulated masses: 1,183 ton

 

A/B  = 13,182/9.81 = 1,343 ton

A'/B' =1,183/0.8911 = 1,327 ton

 

A/B and A'/B' show similar values therefore, we can guess that mass data is used for the eigenvalue analysis properly in this example model.

 

Reaction Results (Results Table > Reaction)
Fig. Reaction Results (Results Table > Reaction)

 

Modal Participation Masses (Results Table > Vibration Mode Shape)
Fig. Modal Participation Masses (Results Table > Vibration Mode Shape)

 


 

2. How to define the time history analysis data

 

Now, we take 3 steps to perform the time history analysis in midas Civil. 

 

A. Time History Function

B. Time History Load Cases

C. Dynamic Nodal Loads


 

A. Time History Function

 

Here, we define a function about the relationship between one item among 5 items(Normalized acceleration, Acceleration, Force, Moment, and Normal) and time. 

 

Time History Functions
Fig. Time History Functions

 

 

If there is train load data, we can define a load function for the time history function. The function is Train Load Data Generator in Tools menu. We can import the load data to the time history function simply. 

 

Train Load Data Generator function 2

Fig12

Train Load Data Generator function 3
Fig. Train Load Data Generator function

 

 

 

 

B. Time History Load Cases

 

After defining the time history function, move onto Time History Load Cases function. We can select the type of analysis, the analysis time, the increment of time, damping ratio, and etc.. in the time history load cases function.

 

Time History Load Cases function 
Fig. Time History Load Cases function  

 

 

 

C. Dynamic Nodal Loads

 

This is the last step for the preparation of the time history analysis. In Dynamic Nodal Loads function, we will assign each time history function to a node of elements and time-history load cases. We need to set different arrival times to consider the movement of a train load. We can calculate the arrival times using the formula below.

 

The arrival time = Distance from the starting point to a desired node / the velocity of the train

 

Dynamic Nodal Loads function
Fig. Dynamic Nodal Loads function

 

 

 

It is time-consuming work to define the dynamic nodal load to each node. We would recommend you to organize the number of nodes and to use a spreadsheet.

 

 

Dynamic Nodal Loads function 1

Dynamic Nodal Loads function 2

Dynamic Nodal Loads function 3
Fig. Dynamic Nodal Loads function

 

 


 

3. How to check results from Time History Analysis

 

After the time history analysis, we can check results in various views. We had the eigenvalue analysis. The results of the eigenvalue analysis is shown in Vibration Mode Shape. 

 

 

Results of Vibration Mode Shape in the model view and the table. 1

Results of Vibration Mode Shape in the model view and the table. 2
Fig. Results of Vibration Mode Shape in the model view and the table.

 

The results of the time history analysis can be checked in Results view.

 

Here, we can check envelop results.

 

Results of Time History Analysis 1

Results of Time History Analysis 2
Fig. Results of Time History Analysis

 

The results of time history analysis can be obtained as the graphical format or text format. And also the results can be shown in the model view along the time history. You can find related functions in Time History Results under Results tab.

 

Time History Analysis Result Graphs for Shear 1

Time History Analysis Result Graphs for Shear 2
Fig. Time History Analysis Result Graphs for Shear

 

Time History Analysis Result
Fig. Time History Analysis Result

  


 

Watch the full webinar video

 

 

Susbcribe
MIDAS Newsletter

Thank you, See you soon!
Share
Ji Hoon Kang | Lead Engineer | MIDAS IT

His main role is to work closely with bridge engineers around the world to ensure they are satisfied with midas Civil and to listen the areas of improvement. He also manages multiple training programs to show the shortest path to successfully complete their bridge projects.

Comments
Download Download the Webinar
Presentation file

midas Civil project tutorial of the Time History Analysis of Steel U-Girder Bridge

All