Would you like to sign out?

Select Country

  • Afghanistan English
  • Albania English
  • Algeria English
  • American Samoa English
  • Andorra English
  • Angola English
  • Anguilla English
  • Antarctica English
  • Antigua and Barbuda English
  • Argentina Español
  • Armenia English
  • Aruba English
  • Australia English
  • Austria English
  • Azerbaijan English
  • Bahamas English
  • Bahrain English
  • Bangladesh English
  • Barbados English
  • Belarus English
  • Belgium English
  • Belize English
  • Benin English
  • Bermuda English
  • Bhutan English
  • Bolivia Español
  • Bosnia and Herzegovina English
  • Botswana English
  • Bouvet Island English
  • Brazil English
  • British Indian Ocean Territory English
  • British Virgin Islands English
  • Brunei English
  • Bulgaria English
  • Burkina Faso English
  • Burundi English
  • Cambodia English
  • Cameroon English
  • Canada English
  • Cape Verde English
  • Caribbean Netherlands English
  • Cayman Islands English
  • Central African Republic English
  • Chad English
  • Chile Español
  • Christmas Island English
  • Cocos (Keeling) Islands English
  • Colombia Español
  • Comoros English
  • Congo English
  • Cook Islands English
  • Costa Rica Español
  • Côte d’Ivoire English
  • Croatia English
  • Cuba Español
  • Curaçao English
  • Cyprus English
  • Czech Republic English
  • Democratic Republic of the Congo English
  • Denmark English
  • Djibouti English
  • Dominica English
  • Dominican Republic Español
  • Ecuador Español
  • Egypt English
  • El Salvador Español
  • Equatorial Guinea English
  • Eritrea English
  • Estonia English
  • Ethiopia English
  • Falkland Islands English
  • Faroe Islands English
  • Fiji English
  • Finland English
  • France English
  • French Guiana Español
  • French Polynesia English
  • French Southern Territories English
  • Gabon English
  • Gambia English
  • Georgia English
  • Germany English
  • Ghana English
  • Gibraltar English
  • Greece English
  • Greenland English
  • Grenada English
  • Guadeloupe Español
  • Guam English
  • Guatemala Español
  • Guernsey English
  • Guinea English
  • Guinea-Bissau English
  • Guyana English
  • Haiti Español
  • Heard Island and McDonald Islands English
  • Honduras Español
  • Hong Kong English
  • Hungary English
  • Iceland English
  • India English
  • Indonesia English
  • Iran English
  • Iraq English
  • Ireland English
  • Isle of Man English
  • Israel English
  • Italy English
  • Jamaica English
  • Japan 日本語
  • Jersey English
  • Jordan English
  • Kazakhstan English
  • Kenya English
  • Kiribati English
  • South Korea 한국어
  • Kuwait English
  • Kyrgyzstan English
  • Laos English
  • Latvia English
  • Lebanon English
  • Lesotho English
  • Liberia English
  • Libya English
  • Liechtenstein English
  • Lithuania English
  • Luxembourg English
  • Macau English
  • Madagascar English
  • Malawi English
  • Malaysia English
  • Maldives English
  • Mali English
  • Malta English
  • Marshall Islands English
  • Martinique English
  • Mauritania English
  • Mauritius English
  • Mayotte English
  • Mexico Español
  • Micronesia English
  • Moldova English
  • Monaco English
  • Mongolia English
  • Montenegro English
  • Montserrat English
  • Morocco English
  • Mozambique English
  • Myanmar English
  • Namibia English
  • Nauru English
  • Nepal English
  • Netherlands English
  • New Caledonia English
  • New Zealand English
  • Nicaragua Español
  • Niger English
  • Nigeria English
  • Niue English
  • Norfolk Island English
  • Northern Mariana Islands English
  • Norway English
  • Oman English
  • Pakistan English
  • Palau English
  • Palestine English
  • Panama Español
  • Papua New Guinea English
  • Paraguay Español
  • Peru Español
  • Philippines English
  • Pitcairn Islands English
  • Poland English
  • Portugal Español
  • Puerto Rico Español
  • Qatar English
  • Réunion English
  • Romania English
  • Russia English
  • Rwanda English
  • Saint Barthélemy Español
  • Saint Helena English
  • Saint Kitts and Nevis English
  • Saint Lucia English
  • Saint Martin Español
  • Saint Pierre and Miquelon English
  • Saint Vincent and the Grenadines English
  • Samoa English
  • San Marino English
  • São Tomé and Príncipe English
  • Saudi Arabia English
  • Senegal English
  • Serbia English
  • Seychelles English
  • Sierra Leone English
  • Singapore English
  • Sint Maarten English
  • Slovakia English
  • Slovenia English
  • Solomon Islands English
  • Somalia English
  • South Africa English
  • South Georgia English
  • South Sudan English
  • Spain English
  • Sri Lanka English
  • Sudan English
  • Suriname English
  • Svalbard and Jan Mayen English
  • Eswatini English
  • Sweden English
  • Switzerland English
  • Syria English
  • Taiwan English
  • Tajikistan English
  • Tanzania English
  • Thailand English
  • Togo English
  • Tokelau English
  • Tonga English
  • Trinidad and Tobago English
  • Tunisia English
  • Turkey English
  • Turkmenistan English
  • Turks and Caicos Islands English
  • Tuvalu English
  • U.S. Virgin Islands English
  • Uganda English
  • Ukraine English
  • United Arab Emirates English
  • United Kingdom English
  • United States English
  • U.S. Minor Outlying Islands English
  • Uruguay Español
  • Uzbekistan English
  • Vanuatu English
  • Vatican City English
  • Venezuela Español
  • Vietnam English
  • Wallis and Futuna English
  • Western Sahara English
  • Yemen English
  • Zambia English
  • Zimbabwe English
  • Åland Islands English
  • East Timor English
  • Netherlands Antilles English
  • Serbia and Montenegro English
  • North Macedonia English
  • Timor-Leste English

Steel Composite Girder Flexural Capacity: AASHTO vs Eurocode

November 26, 2021
BLOG BRIDGE INSIGHT

 

Steel Composite Girder Flexural Capacity: AASHTO vs Eurocode

 

 

Table of Contents

 

1. Introduction

2. Flexural Resistance as per AASHTO LRFD

3. Flexural Resistance as per Eurocode

4. Comparison of AASHTO vs Eurocode Flexural Resistance

5. Conclusion


 

1. Introduction

 

Steel composite bridges are widely used due to the proper utilization of tensile strength of steel girder and the compressive strength of concrete deck, thereby bending resistance is greatly enhanced, making it more efficient and economical. Multi-girder system or ladder deck forms of steel composite bridges are the main forms of construction having simply supported or continuous girders.

 

In this article, design provisions for ultimate flexural resistance as per AASHTO LRFD and Eurocode are detailed. Flowcharts are shown for better understanding.

 


 

2. Flexural Resistance as per AASHTO LRFD

 

The procedure of calculating flexural capacity of steel composite I section is outlined in Figure 1, where four cases are established. 

 

Case 1: Flexural Resistance of Positive Flexure Moment in Compact Section.

Case 2: Flexural Resistance of Positive Flexure Moment in Non-Compact Section.

Case 3: Flexural Resistance of Negative Flexure Moment.

Case 4: Flexural Resistance of Negative Flexure Moment by using Appendix A6.

 

 

Picture1

Figure 1. Flowchart for calculation of Positive Moment Flexural Capacity as per AASHTO LRFD
 
 
 
 
 

Picture2

Figure 2. Flowchart of the flexural resistance of Positive Flexure Moment in Compact Section
 
 

 

 

Picture3

Figure 3. Flowchart of the flexural resistance of Positive Flexure Moment in Noncompact Section
 
 
 

 

Picture4

Figure 4. Flowchart of the flexural resistance of Negative Flexure Moment
 
 
 

 

Picture5

Figure 5. Flowchart of the flexural resistance of Negative Flexure Moment by using Appendix A6
 
 

 

3. Flexural Resistance as per Eurocode

 

Bending resistance, MRd, can be calculated as follows based on its class.

 

Class 1 or 2 cross‐sections can be checked by using the plastic or elastic bending resistance.

 

Class 3 cross‐sections are checked with the elastic bending resistance, or possibly reclassified as effective Class 2 cross‐section and then checked with the plastic bending resistance.

 

Class 4 cross‐sections are also checked with the elastic bending resistance but by using the effective cross‐section, reduced to take account of buckling.

 

Picture6

Figure 6. Flowchart of flexural resistance as per Eurocode
 
 

 


 

4. Comparison of AAHSTO vs Eurocode Flexural Resistance

 

Let's take a 2-Span Steel Composite I girder Curved bridge for comparison.

 

Number of main girder: Four, Steel Composite I girder

Curvature radius: 4.318 m

Construction Stage Analysis: Yes

 

The bridge is modeled in midas Civil as shown below:

 

Picture7

Figure 7. Two-span Steel Composite I girder curved bridge model
 
 

 

Keeping the materials, sections, and loading the same, the positive bending region was designed as per AASHTO LRFD-17 and Eurocode (EN1994-2). The results are illustrated in figure 8 where the flexural resistance checks are satisfied as per the codes.

 
 

 

AASHTO LRFD

Eurocode

Section

 

Materials

Steel      

fsk= 355.000 MPa

Es=210000.000    MPa       

 

Concrete                                  

fck= 30.000 MPa 

Ecm = 33000.000 MPa        

 

Reinforcement    

fyk = 400.000 MPa

Er = 210000.000 MPa         

 

Steel      

fsk= 355.000 MPa

Es=210000.000    MPa       

 

Concrete                                  

fck= 30.000 MPa 

Ecm = 33000.000 MPa        

 

Reinforcement    

fyk = 400.000 MPa

Er = 210000.000 MPa         

 

Region

Positive Bending

Positive Bending

Demand Forces

Steel only moment

MD1 =2462 KNm

 

Long-term moment

MD2 =1045 KNm

 

Short-term moment

MD3 =1457 KNm

 

 

Before Composite Moment

Ma,Ed =2462 KNm

 

After Composite Moment

Mc,Ed =2502 KNm

 

MEd = 4964 KNm

 

Section Classification

Non-compact section for Curved Bridge

Class 1

Flexural Resistance

▪ Check Flexural Resistance of Composite noncompact section (AASHTO LRFD Bridge, 2018, 6.10.7.2)                 

                             

i. Check compression flange            

Fnc = Rb · Rh · Fyc = 355.000 MPa

Fbu = 67.858 MPa

             ≤ Фf · Fnc = 355.000 MPa HENCE OK    

                 

ii. Check tension flange                     

Fnt = Rh · Fyt = 355.000 MPa

fbu + (1/3) fl = 99.115 MPa

             ≤ Фf · Fnt = 355.000 MPa

 

HENCE OK                                            in which :

Rb = 1.000

Rh = 1.000

Фf = 1.000

▪ Check Flexural Resistance

(EN 1994-2:2005)

 

 

 

- Plastic resistance moment, Mpl, Rd

 

Plastic NA = 1812.6 mm

 

 Nslab  = 11221.020 kN                      

 Ng,top  = 5348.875 kN                          (Upper side of PNA)

 Ng,bot =16569.895 kN                       (Lower side of PNA)

 

 Mpl,Rd = 22842.225 kNㆍm         

 xpl = 330.327 mm                                                           

MRd = βMpl,Rd = 22842.2kNㆍm                                    

here, β =1.000                                                                                         

MRd  = 22842.22 kNㆍm            

         >MEd = 4965.21 kNㆍm

HENCE OK                                                                                     

Figure 8. Flexural resistance comparison between AASHTO LRFD and Eurocode
 
 

 

5. Conclusion

 

 

The bending resistance of a steel composite girder can be calculated using the plastic stress distribution method. AASHTO LRFD uses load and resistance factor design where resistance factors(Фf) are multiplied with the actual bending resistance, whereas Eurocode uses partial safety factors for materials(γ) and reduction factors(β). The reduction factor β is applied only when high-strength steels of Fyk = 420 and 460 MPa are used.

 

In both the codes, based on section classification the moment capacity will be affected by the demand moments. So designer must prepare the load combinations in midas Civil carefully. AASHTO LRFD suggests moment resistance checks for compact sections in positive moment regions and for non-compact and negative bending regions, a stress check approach is performed. Whereas Eurocode suggests a moment resistance check approach only.

Susbcribe
MIDAS Newsletter

Thank you, See you soon!
Share
About the Author
Suman Dhara | Senior Bridge Engineer | MIDAS IT India

Suman has pursued his Master's Degree in Structural Engineering from IIT Hyderabad and has 6+ years of extensive Technical Consulting experience for Bridge & Building Projects. He enjoys providing solutions to engineers on sophisticated projects ranging from bridge engineering, building engineering, and special mechanics problems. 

Comments
DOWNLOAD Ebook Download

Please fill out the form below
to download the Ebook

All